R20

Code No: **R20A0506**

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

II B.Tech I Semester Supplementary Examinations, June 2025

Computer Organization

(CSE, CSE-CS, CSE-AIML & B.Tech-AIML)													
Roll No													
										May	x. Mai	·ks: 70)

Time: 3 hours

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

SECTION-I BCLL CO(s) Marks 1 Demonstrate how data is transferred between the CPU and A L3 CO-I [7M] RAM using a bus structure. Compare two's complement and one's complement in terms of L4 CO-I B [7M] representation and arithmetic operations. 2 Compare the roles of registers and cache in improving the A L2 CO-I [7M] performance of a computer. Analyze the difference between fixed-point and floating-point B L4 CO-I [7M] representations. **SECTION-II** 3 A Explain the significance of Register Transfer Language in L2 CO-II [7M] describing computer operations. B Analyze how shift micro-operations are used in binary L4 CO-II [7M] systems. OR 4 Illustrate the difference between arithmetic and logical micro-L2 A CO-II [7M] operations with examples. Explain the instruction cycle of a CPU, detailing the fetch, B L2 CO-II [7M] decode and execute. **SECTION-III** Describe the different addressing modes used in instruction 5 A L4 CO-III [7M] sets with examples. Why are addressing modes important for efficient programming? B Describe the differences between direct addressing and L2 CO-III [7M] indirect addressing in the context of address sequencing. OR 6 A Illustrate the role of data transfer in executing an instruction L3 **CO-III** [7M] within a CPU with an example. Demonstrate how the control unit interacts with other B L2 CO-III [7M] components of the CPU during instruction execution. **SECTION-IV** 7 Describe memory hierarchy in a computer system. Why is A L2 **CO-IV** [7M] caching important in the memory hierarchy?

13. ***

	В	Define page fault. Explain briefly about any two page replacement algorithms with suitable examples.	L3	CO-IV	[7M]
8	A	Compare associative memory with traditional memory in	L4	CO-IV	[7M]
		terms of access time, flexibility, and complexity.			
	B	You have 3 page frames available and the following page	L3	CO-IV	[7M]
		reference string:			
		7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2			
		a) Use the Optimal page replacement algorithm to determine			
		how many page faults occur.			
		b) Explain why this algorithm is considered "optimal" and			
		provide a comparison with FIFO and LRU based on the			
		number of page faults.			
		SECTION-V			
9	A	Explain the role of peripheral devices in expanding the	L2	CO-V	[7M]
		functionality of a computer system.			
	B	Compare the impact of different types of hazards (data,	L4	CO-V	[7M]
		structural, control) on the throughput of a pipelined CPU. OR			
10		Discuss about DMA technique in detail.	L2	CO-V	[14M]